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Abstract

We use Dixon’s general equations of motion
for extended bodies to compute the Papa-
petrou’s equations for an extended test body
in Schwarzschild space-time. We incorpo-
rate the force and torque terms which in-
volve multipolar moments. The Corinaldesi-
Papapetrou spin supplementary condition is
introduced to obtain the equations of motion
in the rest frame of the Schwarzschild field.

Introduction

The general equations of motion for an extended
body in a given gravitational background were
obtained by Dixon [1] in multipole approximation
of the body structure for any order. The method
involves the definition of a world-tube enclosing
the entire body, an appropriate foliation of the
spacetime and a convenient worldline represent-
ing the center of mass (CM), around which the
multipole expansion are performed. The set of
equations for extended bodies is

F ν ≡ δpν

δs
− 1

2
SκλvµR ν

κλµ , (1)

Lκλ ≡ δSκλ

δs
− 2p[κvλ], (2)

where pν = Muν is the total four-momentum,
Sκλ is the spin tensor, F ν and Lκλ are the force
and torque linked with the structure of the body
beyond the quadrupole terms.

Figure 1: The timelike world line enclosed by a world tube.
The spacelike hypersurfaces are orthogonal to uµ = (v0,u)
and vµ = (v0,v) is tangent to the world line.

Even before Dixon’s work, Papapetrou [2] de-
rived the equations of motion of spinning test
particles, which are the starting point for the
analysis of the precession of gyroscopes. We
consider these equations as a particular case
of the equations (1-2), and compute the equa-
tions of motion for an extended test body im-
mersed in Schwarzschild spacetime. We impose
the Corinaldesi-Papapetrou spin supplementary
condition which specifies the line γ representing
the motion of the center of mass.
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Notation and conventions

The Schwarzschild metric in Cartesian coordi-
nates (t, xi) is written as

g00 = −eµ, gij = δij −
(1− e−µ)

r2 xixj, (3)

with eµ = − (1− 2r0/r), and r0 = Gm
c2 being the

gravitational radius of the central body.

Usually to equations (1-2), supplementary condi-
tions are added which single out the worldline of
the CM. We apply the Corinaldesi-Papapetrou
condition which holds in the rest-frame of the
Schwarzschild field. As a consequence of this
choosing the independent components of the spin
tensor reduces to three, thus

Sk ≡ 1
2
εijmδ

kmSij, (4)

Equations of motion

Let λα to be a four-vector defined by

λ0 = c
2r0

r3 e
−µ(r · v)ṫ,

λ = r0

r3

[
c2eµṫ2 + 2|v|2 − 1

r2

(
2 + e−µ

)
(r · v)2

]
r,

(5)
and let the torque terms, related to high multi-
polar structure of the test body,

τ = 1
2
εijm

(1
2
Lij + 1

v0L
0[ivj]

)
δkm, (6)

ς i = δ

δs

( 1
v0L

0i
)
. (7)

Then, the nongeodesic equations of motion can
be expressed as

CM equation

d

ds
(M∗v0) +M∗λ

0−F 0 = 0 (8)

d

ds
(M∗v) +M∗λ + 3r0

r5

[
(S · r)(r× v) + e−µ(r · v)(r× S)

]
+F− r0

r3e
−µ(r× τ )− ς = 0. (9)

Spin equation

Ṡ− r0

r3

[
2e−µ(r · v)S + 2(r · S)v− e−µ(v · S)r− 1

r2

(
2 + e−µ

)
(r · v)(r · S)r

]
−τ = 0 (10)

Differentiation with respect to the parameter s are denoted with a dot.

Effective Mass

In the equations (8-10), M∗ represents an effective mass associated with the mass of the body plus an
energetic component which results from the interaction between the multipolar structure of the body
and the spacetime curvature.

M∗ = M +Ms +ML, (11)

whereM is a positive scalar comming from the four-momentum definition. In general it is not constant
and its variation depends on the high multipolar structure. Hence, dM/ds vanishes whenever one
neglects the force and torque which arise from the multipole moments of the body. Ms assumes the
characteristic form of a spin-orbit interaction energy andML represents the energy associated with the
interaction between the structure of the test body and the gravitational fields. They are written as

Ms = r0

Mr3e
−µ(r× p) · S , and ML = uσ

v0L
0σ . (12)

Conclusion

We have examined the Papapetrou’s equations of motion for an extended body with arbitrary multi-
polar structure. The highlighted terms in the equations (8-10) are new contributions to the motion of
the spinning test body associated with the quadrupole and higher multipolar structure of the body,
which depends on its stress-energy tensor and the gravitational fields. In the dipole approximation this
equations reduce to the classical Papapetrou’s equations. Also, we present an additional contribution
to the mass of the body in (12).
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